Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: covidwho-20244437

RESUMO

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Assuntos
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infecções Irruptivas , Multiômica , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Protein Cell ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: covidwho-2286280

RESUMO

Although the development of COVID-19 vaccines has been a remarkable success, the heterogeneous individual antibody generation and decline over time are unknown and still hard to predict. In this study, blood samples were collected from 163 participants who next received two doses of an inactivated COVID-19 vaccine (CoronaVac®) at a 28-day interval. Using TMT-based proteomics, we identified 1,715 serum and 7,342 peripheral blood mononuclear cells (PBMCs) proteins. We proposed two sets of potential biomarkers (seven from serum, five from PBMCs) at baseline using machine learning, and predicted the individual seropositivity 57 days after vaccination (AUC = 0.87). Based on the four PBMC's potential biomarkers, we predicted the antibody persistence until 180 days after vaccination (AUC = 0.79). Our data highlighted characteristic hematological host responses, including altered lymphocyte migration regulation, neutrophil degranulation, and humoral immune response. This study proposed potential blood-derived protein biomarkers before vaccination for predicting heterogeneous antibody generation and decline after COVID-19 vaccination, shedding light on immunization mechanisms and individual booster shot planning.

3.
Cell Discov ; 8(1): 70, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1960340

RESUMO

Little is known regarding why a subset of COVID-19 patients exhibited prolonged positivity of SARS-CoV-2 infection. Here, we found that patients with long viral RNA course (LC) exhibited prolonged high-level IgG antibodies and higher regulatory T (Treg) cell counts compared to those with short viral RNA course (SC) in terms of viral load. Longitudinal proteomics and metabolomics analyses of the patient sera uncovered that prolonged viral RNA shedding was associated with inhibition of the liver X receptor/retinoid X receptor (LXR/RXR) pathway, substantial suppression of diverse metabolites, activation of the complement system, suppressed cell migration, and enhanced viral replication. Furthermore, a ten-molecule learning model was established which could potentially predict viral RNA shedding period. In summary, this study uncovered enhanced inflammation and suppressed adaptive immunity in COVID-19 patients with prolonged viral RNA shedding, and proposed a multi-omic classifier for viral RNA shedding prediction.

4.
Cell Rep ; 38(3): 110271, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: covidwho-1588135

RESUMO

The utility of the urinary proteome in infectious diseases remains unclear. Here, we analyzed the proteome and metabolome of urine and serum samples from patients with COVID-19 and healthy controls. Our data show that urinary proteins effectively classify COVID-19 by severity. We detect 197 cytokines and their receptors in urine, but only 124 in serum using TMT-based proteomics. The decrease in urinary ESCRT complex proteins correlates with active SARS-CoV-2 replication. The downregulation of urinary CXCL14 in severe COVID-19 cases positively correlates with blood lymphocyte counts. Integrative multiomics analysis suggests that innate immune activation and inflammation triggered renal injuries in patients with COVID-19. COVID-19-associated modulation of the urinary proteome offers unique insights into the pathogenesis of this disease. This study demonstrates the added value of including the urinary proteome in a suite of multiomics analytes in evaluating the immune pathobiology and clinical course of COVID-19 and, potentially, other infectious diseases.


Assuntos
COVID-19/urina , Imunidade , Metaboloma , Proteoma/análise , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/imunologia , COVID-19/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , China , Estudos de Coortes , Feminino , Humanos , Imunidade/fisiologia , Masculino , Metaboloma/imunologia , Metabolômica , Pessoa de Meia-Idade , Gravidade do Paciente , Proteoma/imunologia , Proteoma/metabolismo , Proteômica , Urinálise/métodos , Adulto Jovem
5.
J Proteome Res ; 21(1): 90-100, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1531980

RESUMO

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.


Assuntos
COVID-19 , Humanos , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Manejo de Espécimes
6.
Comput Struct Biotechnol J ; 19: 3640-3649, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1272373

RESUMO

Severity prediction of COVID-19 remains one of the major clinical challenges for the ongoing pandemic. Here, we have recruited a 144 COVID-19 patient cohort, resulting in a data matrix containing 3,065 readings for 124 types of measurements over 52 days. A machine learning model was established to predict the disease progression based on the cohort consisting of training, validation, and internal test sets. A panel of eleven routine clinical factors constructed a classifier for COVID-19 severity prediction, achieving accuracy of over 98% in the discovery set. Validation of the model in an independent cohort containing 25 patients achieved accuracy of 80%. The overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.70, 0.99, 0.93, and 0.93, respectively. Our model captured predictive dynamics of lactate dehydrogenase (LDH) and creatine kinase (CK) while their levels were in the normal range. This model is accessible at https://www.guomics.com/covidAI/ for research purpose.

7.
Cell ; 184(3): 775-791.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1014394

RESUMO

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.


Assuntos
COVID-19/metabolismo , Regulação da Expressão Gênica , Proteoma/biossíntese , Proteômica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Especificidade de Órgãos
8.
Cell ; 182(1): 59-72.e15, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: covidwho-401448

RESUMO

Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we performed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then trained a machine learning model using proteomic and metabolomic measurements from a training cohort of 18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments. We identified molecular changes in the sera of COVID-19 patients compared to other groups implicating dysregulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic suppression. This study revealed characteristic protein and metabolite changes in the sera of severe COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.


Assuntos
Infecções por Coronavirus/sangue , Metabolômica , Pneumonia Viral/sangue , Proteômica , Adulto , Aminoácidos/metabolismo , Biomarcadores/sangue , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/fisiopatologia , Feminino , Humanos , Metabolismo dos Lipídeos , Aprendizado de Máquina , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/fisiopatologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA